• Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Char ID Heva



  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

2.2Asidi – alkalimetri
Asidimetri dan alkalimetri termasuk reaksi netralisasi yakni reaksi antara ion hidrogen yang berasal dari asam dengan ion hidroksida yang berasal dari basa untuk menghasilkan air yang bersifat netral. Netralisasi dapat juga dikatakan sebagai reaksi antara donor proton (asam) dengan penerima proton (basa).
H+ + OH- H2O
Asidimetri merupakan penetapan kadar secara kuantitatif terhadap senyawa-senyawa yang bersifat basa dengan menggunakan baku asam, sebaliknya alkalimetri adalah penetapan kadar senyawa-senyawa yang bersifat asam dengan menggunakan baku basa.
Untuk menetapkan titik akhir pada proses netralisasi ini digunakan indikator. Menurut W. Ostwald, indikator adalah suatu senyawa organik kompleks dalam bentuk asam atau dalam bentuk basa yang mampu berada dalam keadaan dua macam bentuk warna yang berbeda dan dapat saling berubah warna dari bentuk satu ke bentuk yang lain ada konsentrasi H+ tertentu atau pada pH tertentu.
Jalannya proses titrasi netralisasi dapat diikuti dengan melihat perubahan pH larutan selama titrasi, yang terpenting adalah perubahan pH pada saat dan di sekitar titik ekuivalen karena hal ini berhubungan erat dengan pemilihan indikator agar kesalahan titrasi sekecil-kecilnya.
Larutan asam bila direaksikan dengan larutan basa akan menghasilkan garam dan air. Sifat asam dan sifat basa akan hilang dengan terbentuknya zat baru yang disebut garam yang memiliki sifat berbeda dengan sifat zat asalnya. Karena hasil reaksinya adalah air yang memiliki sifat netral yang artinya jumlah ion H+ sama dengan jumlah ion OH- maka reaksi itu disebut dengan reaksi netralisasi atau penetralan. Pada reaksi penetralan, jumlah asam harus ekivalen dengan jumlah basa. Untuk itu perlu ditentukan titik ekivalen reaksi. Titik ekivalen adalah keadaan dimana jumlah mol asam tepat habis bereaksi dengan jumlah mol basa. Untuk menentukan titik ekivalen pada reaksi asam-basa dapat digunakan indikator asam-basa. Ketepatan pemilihan indikator merupakan syarat keberhasilan dalam menentukan titik ekivalen. Pemilihan indikator didasarkan atas pH larutan hasil reaksi atau garam yang terjadi pada saat titik ekivalen.
Salah satu kegunaan reaksi netralisasi adalah untuk menentukan konsentrasi asam atau basa yang tidak diketahui. Penentuan konsentrasi ini dilakukan dengan titrasi asam-basa. Titrasi adalah cara penentuan konsentrasi suatu larutan dengan volume tertentu dengan menggunakan larutan yang sudah diketahui konsentrasinya. Bila titrasi menyangkut titrasi asam-basa maka disebut dengan titrasi adisi-alkalimetri.
Asidi dan alkalimetri ini melibatkan titrasi basa yang terbentuk karena hidrolisis garam yang berasal dari asam lemah (basa bebas) dengan suatu asam standar (asidimetri), dan titrasi asam yang terbentuk dari hidrolisis garam yang berasal dari basa lemah (asam bebas) dengan suatu basa standar (alkalimetri). Bersenyawanya ion hidrogen dan ion hidroksida untuk membentuk air merupakan akibat reaksi-reaksi tersebut.
Prinsip Titrasi Asam basa
Titrasi asam basa melibatkan asam maupun basa sebagai titer ataupun titran. Titrasi asam basa berdasarkan reaksi penetralan. Kadar larutan asam ditentukan dengan menggunakan larutan basa dan sebaliknya.
Titran ditambahkan titer sedikit demi sedikit sampai mencapai keadaan ekivalen ( artinya secara stoikiometri titran dan titer tepat habis bereaksi). Keadaan ini disebut sebagai “titik ekivalen”.
Pada saat titik ekivalen ini maka proses titrasi dihentikan, kemudian kita mencatat volume titer yang diperlukan untuk mencapai keadaan tersebut. Dengan menggunakan data volume titran, volume dan konsentrasi titer maka kita bisa menghitung kadar titran.
Cara Mengetahui Titik Ekivalen
Ada dua cara umum untuk menentukan titik ekivalen pada titrasi asam basa, yaitu:
1. Memakai pH meter untuk memonitor perubahan pH selama titrasi dilakukan, kemudian membuat plot antara pH dengan volume titran untuk memperoleh kurva titrasi. Titik tengah dari kurva titrasi tersebut adalah titik ekuivalen.
2. Memakai indikator asam basa. Indikator ditambahkan pada titran sebelum proses titrasi dilakukan. Indikator ini akan berubah warna ketika titik ekuivalen terjadi, pada saat inilah titrasi kita hentikan.
Pada umumnya cara kedua dipilih disebabkan kemudahan pengamatan, tidak diperlukan alat tambahan, dan sangat praktis.
Indikator yang dipakai dalam titrasi asam basa adalah indikator yang perubahan warnanya dipengaruhi oleh pH. Penambahan indikator diusahakan sesedikit mungkin dan umumnya adalah dua hingga tiga tetes.
Untuk memperoleh ketepatan hasil titrasi maka titik akhir titrasi dipilih sedekat mungkin dengan titik ekivalen, hal ini dapat dilakukan dengan memilih indiator yang tepat dan sesuai dengan titrasi yang akan dilakukan.
Keadaan dimana titrasi dihentikan dengan cara melihat perubahan warna indiator disebut sebagai titik akhir titrasi (Anonim, 2009).
Titik akhir titrasi adalah keadaan dimana reaksi telah berjalan dengan sempurna yang biasanya ditandai dengan pengamatan visual melalui perubahan warna indikator. Indikator yang digunakan pada titrasi asam basa adalah asam lemah atau basa lemah. Asam lemah dan basa lemah ini umumnya senyawa organik yang memiliki ikatan rangkap terkonjugasi yang mengkontribusi perubahan warna pada indikator tersebut. Jumlah indikator yang ditambahkan kedalam larutan yang akan dititrasi harus sesedikit mungkin, sehingga indikator tidak mempengaruhi pH larutan dengan demikian jumlah titran yang diperlukan untuk terjadi perubahan warna juga seminimal mungkin. Umumnya dua atau tiga tetes larutan indikator 0,1% ( b/v ) diperlukan untuk keperluan titrasi. Dua tetes ( 0,1 ml ) indikator ( 0,1% dengan berat formula 100 ) adalah sama dengan 0,01 ml larutan titran dengan konsentrasi 0,1 M.
Indikator asam basa akan memiliki warna yang berbeda dalam keadaan tak terionisasi dengan keadaan terionisasi. Sebagai contoh untuk indikator phenolphthalein ( pp ) seperti di atas dalam keadaan tidak terionisasi ( dalam larutan asam ) tidak akan berwarna ( colorless ) dan akan berwarna merah keunguan dalam keadaan terionisasi ( dalam larutan basa ).
Warna yang akan teramati pada penentuan titik akhir titrasi adalah warna indikator dalam keadaan transisinya. Untuk indikator phenolphthalein karena indikator ini bertransisi dari tidak berwarna menjadi merah keungguan maka yang teramati untuk titik akhir titrasi adalah warna merah muda. Contoh lain adalah metil merah. Oleh karena metil merah bertransisi dari merah ke kuning, maka bila indikator metil merah dipakai dalam titrasi maka pada titik akhir titrasi warna yang teramati adalah campuran merah dengan kuning yaitu menghasilkan warna orange (Anonim, 2009).
2.3Asam Cuka
Asam asetat, asam etanoat atau asam cuka adalah senyawa kimia asam organik yang dikenal sebagai pemberi rasa asam dan aroma dalam makanan. Asam cuka memiliki rumus empiris C2H4O2. Rumus ini seringkali ditulis dalam bentuk CH3-COOH, CH3COOH, atau CH3CO2H.
Asam cuka merupakan salah satu asam karboksilat paling sederhana, setelah asam format. Larutan asam cuka dalam air merupakan sebuah asam lemah, artinya hanya terdisosiasi sebagian menjadi ion H+ dan CH3COO-. Asam cuka merupakan pereaksi kimia dan bahan baku industri yang penting. Asam asetat digunakan dalam produksi polimer seperti polietilena tereftalat, selulosa asetat, dan polivinil asetat, maupun berbagai macam serat dan kain. Dalam industri makanan, asam asetat digunakan sebagai pengatur keasaman. Di rumah tangga, asam asetat encer juga sering digunakan sebagai pelunak air. Dalam setahun, kebutuhan dunia akan asam asetat mencapai 6,5 juta ton per tahun. 1,5 juta ton per tahun diperoleh dari hasil daur ulang, sisanya diperoleh dari industri petrokimia maupun dari sumber hayati.(anonim, 2009)

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Asam Cuka
Asam asetat, asam etanoat atau asam cuka adalah senyawa kimia asam organik yang dikenal sebagai pemberi rasa asam dan aroma dalam makanan. Asam cuka memiliki rumus empiris C2H4O2. Rumus ini seringkali ditulis dalam bentuk CH3-COOH, CH3COOH, atau CH3CO2H.
Asam cuka merupakan salah satu asam karboksilat paling sederhana, setelah asam format. Larutan asam cuka dalam air merupakan sebuah asam lemah, artinya hanya terdisosiasi sebagian menjadi ion H+ dan CH3COO-. Asam cuka merupakan pereaksi kimia dan bahan baku industri yang penting. Asam asetat digunakan dalam produksi polimer seperti polietilena tereftalat, selulosa asetat, dan polivinil asetat, maupun berbagai macam serat dan kain. Dalam industri makanan, asam asetat digunakan sebagai pengatur keasaman. Di rumah tangga, asam asetat encer juga sering digunakan sebagai pelunak air. Dalam setahun, kebutuhan dunia akan asam asetat mencapai 6,5 juta ton per tahun. 1,5 juta ton per tahun diperoleh dari hasil daur ulang, sisanya diperoleh dari industri petrokimia maupun dari sumber hayati.(anonim, 2009)

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

BAB 1. PENDAHULUAN
1.1 Latar Belakang
Perubahan fase zat cair ke padat disebut membeku. Hal ini banyak terjadi dilingkungan sekitar kita, terutama di negara yang memiliki musim dingin. Setiap zat mengalami pembekuan dengan waktu yang berbeda-beda, sebab titik beku yang dimiliki oleh masing-masing zat berbeda. Semakin tinggi titik bekunya maka zat tersebut akan cepat mengalami pembekuan.
Negara yang bermusim dingin mengalami proses pembekuan yang berlangsung cepat sekali, mulai dari air yang berada di alam bebs maupun air dalam radiator kendaraan bermotor, karena hal itu sangat merugikan maka untuk menanggulangi hal tersebut dilakukan penurunan titik beku. Penurunan titik dengan cara menambahkan suatu zat anti beku kedalam radiator. Penurunan titik beku terjadi karena terjadi kenaikan tekanan cairan dalam radiator, sehingga cairan membeku dalam suhu yang lebih rendah dari pelarutnya. Penurunan titik beku larutan encer sebanding dengan konsentrasi massanya. Oleh karena itu, untuk mengetahui cara menentukan tetapan titik beku dan menentukan berat molekul zat non volatil dilakukan percobaan “Penurunan Titik Beku Larutan” ini.
1.2 Rumusan Masalah
1) Bagaimana cara menentukan tetapan penurunan titik beku molal pelarut ?
2) Bagaimana cara menentukan BM zat non volatil ?
BAB 2 Tinjauan Pustaka
2.1 MSDS
2.1.1 Air
Nama IUPAC adalah Dihidrogen monoksida, Oksida. Nama Lain dari air adalah Hidroksilik acid, Hidrogen Hidroxida. Rumus Molekulnya H2O. Massa molar 18,01528 g/mol. Berupa cairan tidak berwarna, tidak berasa, tidak berbau pada keadaan standar, memiliki massa jenis 0,998 g/cm3 (cairan pada 200C), 0,92 g/cm3 (padatan). Titik lelehnya 0 °C, 32 °F (273.15 K) dan memiliki titik didih 100 °C, 212 °F (373.15 K). Kalor jenis air adalah 4184 J/(kg•K) (cairan pada 20 °C). Viskositas : 0.001 cP pada 20 °C. Bentuk molekulnya hexagonal (Anonim,2011).
2.1.2 Asam Asetat
Asam asetat, CH 3 COOH adalah asam organik yang memberikan cuka rasa asam dan aroma yang tajam dan merupakan asam lemah , dalam hal ini hanya sebagian dipisahkan asam dalam larutan. Nama lainnya : Asetil hidroksida, Ethylic acid, Hidrogen asetat, Methanecarboxylic acid.
Sifat fisik : Rumus molekul C2H4O2, massa molar 60,05 g mol -1, penampilannya cair , density kepadatan 1,049 g / cm 3 ( l ) 1,266 g / cm 3 ( s ), titik lebur : 16,5 ° C, 290 K, 62 ° F, titik didih :118,1 ° C, 391 K, 245 ° F, larut dalam air, memiliki keasaman : 4.76 dan viscosity : 1,22 mpas.
Asam asetat pekat adalah korosif, karena itu harus ditangani dengan perawatan yang tepat, dapat menyebabkan luka bakar kulit, kerusakan mata permanen, dan iritasi pada selaput lendir. Asam ini tidak kompatibel, disarankan untuk menjaga asam asetat dari asam kromat , glikol etilen , asam nitrat , perklorat asam , permanganates , peroksida dan hidroksil (Anonim, 2011).
2.1.3 Garam
Natrium klorida, juga dikenal sebagai garam, garam dapur yang merupakan senyawa ionik dengan rumus NaCl. Garam yang biasa dimakan itu biasanya digunakan sebagai bumbu dan pengawet makanan. Adapun sifat fisika dan kimia dari Natrium Klorida adalah sebagai berikut: berbentuk kristal, tidak berwarna, higroskopis, sedikit larut dalam alkohol dan larut dalam air dan gliserol, memiliki berat molekul 58,44 g/mol, berbentuk padatan putih dengan struktur bongkahan kristal, titik lelehnya 801oC, titik didihnya 1,413oC (Anonim, 2011).
2.1.4 Naftalen
Naftalen juga dikenal sebagai nafthalin, tar kapur, tar putih, albokarbon, atau nafthene. Sifat fisik naftalen : rumus kimia C10H8, massa molar 128.17 g/mol, density 1.14 gcm-3, tidak dapat larut dalam air, alkohol, larut dalam eter dan benzen, titik cair 80.5 °C, titik didih 128,17 gmol-1, Berwarna putih kristal dan memiliki bau yang kuat.
Naftalen mudah menguap dan mudah terbakar. Naftalen merupakan hidrokarbon padat berwarna putih, yang diperoleh dari penyulingan fraksional batu bara. Sebagian besar naftalen yang diproduksi digunakan sebagai bahan baku pembuatan resin alkil untuk pembuatan plastik. Sebagian kecil untuk zat warna dan bahan kimia lain. Penggunaan langsung adalah sebagai pengusir ngengat (Anonim,2011).
2.2 Penentuan titik beku larutan
Titik beku larutan ialah temperatur pada saat larutan setimbang dengan pelarur padatnya. Larutan akan membeku pada temperatur lebih rendah dari pelarutnya. Pada setiap saat tekanan uap larutan selalu lebih rendah dari pada pelarut murni (Soekardjo,1989).
∆ Tf = Kf . m
dimana,
∆Tf = penurunan titik beku
Kf = tetapan penurunan titik beku molal atau tetapan krioskopik
m = kemolalan
Dapat disimpulkan bahwa :
1. Pada tekanan tetap, penurunan titik beku suatu larutan encer berbanding lurus dengan konsentrasi massa.
2. Larutan encer semua zat terlarut yang tidak mengion, dalam pelarut yang sama, dengan konsentrasi molal yang sama, mempunyai titik beku yang sama, pada tekanan yang sama (Achmad,1996).
Penurunan rumus, diperoleh bahwa penurunan titik beku juga sebanding dengan konsentrasi zat terlarut (molalitas). Diperoleh persamaan sebagai berikut:
∆Tf = m
Pada kenyataannya, persamaan ini tidak hanya berlaku untuk larutan yang mengandung zat terlarut non volatil, tetapi juga berlaku untuk larutan yang mengandung zat terlarut volatile (Bird,1993).
Jika kedalam suatu zat pelarut dimasukkan zat lain yang tidak mudah menguap (non volatil), maka tenaga bebas pelarut tersebut akan turun. Penurunan tenaga bebas ini mengikuti persamaan Nernst.
Gº1 – Gº = RT ln x …………………….. (1)
Gº1 – Gº = Penurunan tenaga bebas pelarut
Dimana : R = Tetapan gas murni umum
T = suhu mutlak
x = Fraksi mol pelarut dalam larutan
Penurunan tenaga bebas ini akan menurunkan hasrat zat pelarut untuk berubah menjadi fase uapnya, sehingga tekanan uap pelarut dalam larutan akan lebih rendah bila dibandingkan dengan tekanan uap pelarut yang sama dalam keadaan murni. Pengaruh penurunan tekanan uap terhadap titik beku larutan mudah difahami dengan bantuan diagram fasa berikut:
Dalam diagram di atas terlihat bahwa titik beku larutan Tf lebih rendah dibandingkan dengan titik beku pelarut murni Tfº. Dari uraian diatas jelas bahwa penurunan titik beku larutan
ΔTf = Tfº – Tf …………………………….(2)
Besarnya tergantung pada fraksi mol pelarut. Karena fraksi mol zat terlarut X1 : menurut persamaan X = 1- X1 maka ΔTf dapat dinyatakan sebagai X1 berikut:
ΔTf = (R(T0f )2/ΔHf) X1 …………………..(3)
Dimana ΔHf adalah panas pencairan pelarut. Jika m ml zat terlarut ke dalam1000 gram zat terlarut, maka di dapat larutan dengan molarutas m. sehingga larutan tersebut mempunyai fraksi mol zat terlarut sebesar
X1 = m / (1000/M)+ m) ……………………..(4)
Dimana adalah berat molekul zat pelarut. Untuk larutan encer m mendekati 0 (nol), maka
X1 = mM/1000, sehingga penurunan titik beku larutan dapat di tulis :
ΔTf = (R(T0f )2 Mm)/1000ΔHf ………………… (5)
Bila di substitusikan :
Kf = (R(T0f )2 M)/1000ΔHf …………………….(6)
Dari X1 = mM/1000 di atas didapat
m = 1000X1 / M
Sedangkan X1= m1 / (m1 + m) = (W1 / M1) / {(W1 / M1 + W/M)}
W1 = berat zat terlarut
M1 = BM zat terlarut
W = berat pelarut
Oleh karena larutan encer, maka (W1 / M1) >>(W /M) , sehingga didapat :
X1 = (W1. M) / (W.M1) dan ΔTf = (1000 / kf) / M1 x (W1 /W)
Rumus untuk menghitung harga kf adalah :
kf = (W.M1 ΔTf) / (1000W1)
sedangkan runus untuk menghitung BM zat terlarurt :
M1 = (1000 kf )/ ΔTf x (W1/W)
(Tim kimia fisik, 2011).
BAB 3 Metodologi Percobaan
3.1 Alat dan Bahan
3.1.1 Alat
- Beaker glass 100 mL
- Erlenmeyer
- Gelas ukur 100 mL
- Stopwatch
- Pengaduk
- Tabung gelas
- Termometer alcohol
3.1.2 Bahan
- Air
- Asam asetat glasial
- Naftalen
- Natrium klorida
3.2 Skema Kerja
3.2.1 Susunan Alat
Keterangan:
A. Termometer alkohol
B. Tabung gelas I
C. Pengaduk
D. Tabung gelas II
E. Tabung gelas III
3.2.2 Persiapan
- Dimasukkan pada tabung gelas E
- Diisi air secukupnya pada tabung D
- Diambil asam asetat glasial sebanyak 20 mL
- Dimasukkan dalam tabung B
3.2.3 Penentuan Tetapan Penurunan Titik Beku Molal
- Didinginkan
- Dicatat suhu pada thermometer A tiap-tiap menit
- Diamati pelarut saat suhu kelihatan tetap, sudah membeku atau belum
- Diulangi langkah di atas sekali lagi
- Ditentukan titik beku pelarut murni T0f
- Dibiarkan pelarut mencair kembali
- Dimasukkan naftalen (BM = 128) sebagai zat pelarut
3.2.4 Penentuan BM Zat X
- Ditambahkan pada larutan di langkah kerja sebelumnya yang dibiarkan mencair
- Diamati Tf nya dan diperhitungkan ∆Tf nya
- Dihitung BM zat x
BAB Hasil dan Pembahasan
4.1 Hasil
4.1.1 Penentuan titik beku asam cuka ( T0f)
Volume asam cuka : 20 mL
Berat jenis asam cuka : 1,05 gr/mL
Berat asam cuka : 21 gram
Waktu ( menit ) Suhu ( oC )
0 21
1 19
2 18
3 16
4 14
5 12
6 9
7 9
8 9
9 9
4.1.2 Penentuan titik beku larutan Naftalen
Berat naftalen : 2,004 gram
Waktu ( menit ) Suhu ( oC )
0 22
1 16
2 11
3 10
4 8
5 7
6 7
7 6
8 6
9 6
4.1.3 Penentuan BM zat X
Volume asam cuka : 20 mL
Berat asam cuka : 21 gram
Berat zat X : 2,003 gram
Waktu ( menit ) Suhu ( oC )
0 20
1 15
2 11
3 9
4 8
5 7
6 7
7 6
8 6
9 6
4.2 Pembahasan
Larutan mempunyai sifat-sifat yang berbeda dari pelarutnya. Salah satu sifat penting dari suatu larutan adalah penurunan titik beku. Titik beku adalah temperatur tetap dimana suatu zat tepat mengalami perubahan wujud dari cair ke padat. Setiap zat yang mengalami pembekuan memiliki tekanan 1 atm. Penambahan zat terlarut nonvolatil ke dalam suatu pelarut menyebabkan terjadinya penurunan titik beku. Keberadaan partikel-partikel zat pelarut mengalami proses pengaturan molekul-molekul dalam pembentukan susunan kristal padat, sehingga diperlukan suhu yang lebih rendah untuk mencapai susunan kristal padat dari fasa cairnya. Hal ini lah yang menyebabkan terjadinya penurunan titik beku suatu larutan yang keadaannya ditambahkan zat terlarut.
Percobaan penentuan titik beku larutan dilakukan untuk menentukan harga tetapan penurunan titik beku ( Kf ) suatu pelarut murni dam menentukan berat molekul zat X. Asam cuka glasial yang digunakan sebagai pelarut murni akan membeku dan zat terlarut seperti naftalen dan zat X tidak akan membeku ketika larutan tersebut mengalami pembekuan.
4.2.1 Fungsi garam dan air dalam tabung D
Garam berfungsi sebagai penurun titik beku air, air yang awalnya berupa es akan memiliki titik beku yang lebih rendah dibandingkan dengan titik beku air murni. Fungsi garam bukan agar air tetap menjadi es, tetapi es akan mencair namun suhu yang dimiliki lebih rendah. Beaker glass yang berisikan air ini berfungsi untuk mencegah agar proses pendinginan berjalan terlalu cepat.
4.2.2 Data yang dihasilkan
Naftalen adalah zat non volatil yang berfungsi menurunkan energi bebas dari pelarut sehingga kemampuan pelarut untuk berubah menjadi fase uapnya akan menurun pula, oleh karena itu tekanan uap pelarut dalam larutan akan lebih rendah bila dibandingkan dengan tekanan uap pelarut yang sama dalam keadaan murni. Penurunan tekanan uap sebanding dengan penurunan titik beku. Jadi jika tekanan uapnya turun maka perubahan titik beku juga akan turun, begitu pun sebaliknya. Titik beku mengalami penurunan setelah ditambahkan naftalen dapat dibuktikan melalui data yang diperoleh dari hasil percobaan, pada menit ketiga titik beku menurun drastis yaitu awalnya dari 18oC menjadi 16oC, penurunan suhu setelah ditambah naftalen pada menit yang ketiga adalah dari 11oC menjadi 10 oC dan ketika ditambahkan zat X terjadi penurunan suhu dari 11oC menjadi 9oC. Sehingga dapat disimpulkan bahwa zat X juga berfungsi sebagai penurun titik beku larutan. Perbedaan suhu yang didapat dari menit pertama kurang sesuai menurut literatur suhu larutan asam cuka glasial ditambah naftalen dan larutan campuran dari asam cuka glasial, naftalen dan zat X lebih rendah dibanding suhu asam cuka glasial murni. Hal tersebut dapat terjadi kemungkinan disebabkan dari pengaruh pengadukan yang tidak konstan, karena kekuatan pengadukan yang diberikan pada larutan berbeda maka peningkatan suhu yang terjadi pada larutan pun berbeda.
Hasil pengamatan tentang penurunan titik beku larutan, diperoleh titik beku asam asetat glasial atau asam cuka ini adalah 3K, dan Kf dari asam asetat glasial itu sendiri adalah 4,2 KKg/mol. Harga Kf asam asetat glasial yang diperoleh pada praktikum kali ini sedikit berbeda dengan Kf asam asetat secara teori, dimana harga Kf asam asetat secara teori adalah 3,9 KKg/mol. Berat molekul dari zat X ini adalam 133.6 g/mol, hasil ini jauh berbeda dengan literatur, sebab zat yang digunakan adalah NaCl yang memiliki berat molekul 58,5g/mol. Perbedaan ini bisa saja disebabkan oleh human error ataupun dari bahan yang digunakan mungkin telah terkontaminasi, sehingga sulit didapat hasil yang sesuai dengan literatur.
4.2.3 Grafik hasil percobaan
a. Grafik asam cuka glasial
Nilai regresi dari grafik adalah 0,9337. Hal ini menunjukkan bahwa grafik yang didapatkan hampir mendekati linier. Penurunan suhu terjadi setiap menitnya, namun penurunan yang cukup drastis pada menit ke-6 dan diperoleh suhu dalam keadaan konstan saat menit ke-7 hingga ke-9. Suhu inilah yang digunakan sebagai titik beku dari asam cuka glasial.
b. Grafik asam cuka + naftalen
Nilai regresi dari grafik adalah 0,748. Hal ini menunjukkan bahwa grafik yang didapatkan kurva yang kurang linier. Terjadi penurunan yang tajam pada menit kedua, hal ini karena pengaruh naftalen sebagai penurun titik beku. menit ke-6 dan diperoleh suhu dalam keadaan konstan saat menit ke-7 hingga ke-9. Suhu inilah yang digunakan sebagai titik beku dari larutan asam cuka glacial dan naftalen.
c. Grafik asam cuka + naftalen + zat X
Nilai regresi dari grafik adalah 0,760. Hal ini menunjukkan bahwa grafik yang didapatkan kurva yang kurang linier. Terjadi penurunan yang tajam pada menit kedua, hal ini karena pengaruh naftalen dan zat X dalam larutan asam asetat glasial yang berperan sebagai penurun titik beku. menit ke-6 dan diperoleh suhu dalam keadaan konstan saat menit ke-7 hingga ke-9. Suhu inilah yang digunakan sebagai titik beku dari larutan asam cuka glasial, naftalen dan zat X.
Bab 5 Penutup
5.1 Kesimpulan
1. Garam berfungsi sebagai penurun titik beku air.
2. Air yang berada di beaker glass D berfungsi untuk memperlambat proses pendinginan.
3. Naftalen merupakan zat non volatil yang berfungsi sebagai penurun titik beku.
4. Kf asam asetat sebesar 4,20 g mol-1K.
5. Berat molekul zat X sebesar 133,6 g/mol.
6. Titik beku suatu larutan lebih rendah dari pada titik beku pelarut murni.
5.2 Saran
1. Seharusnya praktikan menguasai materi praktikum sebelum melakukan percobaan.
2. Ketelitian dan kecermatan sangat berpengaruh terhadap hasil pengamatan.
3. Kebersihan alat menjadi faktor penting dalam mendapatkan data yang lebih akurat.
Daftar Pustaka
Achmad, Hiskia. 1996. Kimia Larutan. Bandung : PT Citra Aditya Bhakti.
Anonim. 2011. Air .http://id.wikipedia.org.wiki/Air, diakses April 2011.
Anonim. 2011.Asam asetat .http://id.wikipedia.org.wiki/Asam_Asetat, diakses April 2011.
Anonim. 2011.Naftalen .http://id.wikipedia.org.wiki/Naftalen, diakses April 2011.
Anonim. 2011. Natrium Klorida. http://id.wikipedia.org.wiki/Natrium_Chloride, diaksesApril 2011.
Bird, Tony. 1993. Kimia Untuk Universitas. Jakarta : PT Gramedia Pustaka Utama.
Soekardjo. 1989. Kimia Fisik. Jakarta : PT Rineka Cipta.
Tim Penyusun. 2009. Penuntun Praktikum Kesetimbangan dan Dinamika Kimia. Jember : Laboratorium Kimia Fisika FMIPA UNEJ.
LAMPIRAN
1. Penentuan penurunan titik beku asam asetat ( )
, dimana : titik beku pelarut murni dan : titik beku asam asetat dan naftalen.
2. Penentuan nilai Kf asam asetat
masam cuka = .v = 1,05 gram mL-1 . 20 mL = 21 gram
3. Penentuan penurunan titik beku zat X
4. Penentuan berat molekul zat X

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

PENURUNAN TITIK BEKU LARUTAN
Titik Beku adalah suhu pada nilai tekanan tertentu, saat terjadi perubahan wujud zat dari cair menjadi padat. Titik beku air murni pada tekanan 760 mmHg adalah 00C . jika kedalam suatu air murni dilarutkan zat yang tidak menguap sehingga membentuk larutan ideal, kemudian didinginkan hingga suhu 00C, ternyata larutan tersebut belum membeku. Agar larutan tersebut dapat membeku, suhu larutan harus diturunkan dibawah titik beku air murni. Selisih antara titik beku pelarut dan titik beku larutan disebut penurunan titik beku larutan.
Titik beku larutan berbanding lurus dengan kemolalan larutan. Hubungannya dapat ditulis sebagai persamaan berikut.

Tf = Kf x m

Ket:
∆Tf =  Penurunan titik beku larutan (0C)
Kf =  Tetapan penurunan titik beku larutan (0C/m)
M    =  Kemolalan (m)
 http://ipanpanur.wordpress.com/2010/10/28/penurunan-titik-beku-larutan-dan-kenaikan-titik-didih-larutan/


 Potensial kimia adalah energi bebas per mol dari setiap substansi dalam sistem kimia. Oleh karena itu potensi zat kimia dalam kondisi tekanan dan temperatur konstan tergantung pada jumlah mol zat yang hadir. Dalam membicarakan hubungan tanaman-air, kita biasanya merujuk pada potensial kimia air sebagai potensi air (Ψw). Ketika kita menggunakan istilah potensi air, kita bisa  mengungkapkan perbedaan antara potensial kimia air pada setiap titik dalam suatu sistem (μw) dan air murni dalam kondisi standar (μw0). Dengan rumus: Ψw = μw – μw0 = RT 1n e /e ᵒ maka kita dapat dengan mudah menentukan potensi air. Dalam rumus, R adalah konstanta gas (erg / mol / derajat), T adalah suhu mutlak (0K), e tekanan uap air murni pada suhu yang sama. Ekspresi RT 1n (e /e0) adalah nol. Mengetahui hal ini, kita dapat mengatakan air murni memiliki potensial nol. Dalam sistem biologis, namun, (e / e0) umumnya kurang dari nol, membuat 1n (e/e0) negatif. Akibatnya, potensi air dari sistem biologi biasanya dinyatakan sebagai jumlah negatif. Sejak murni, air terkadang didefinisikan memiliki potensi nol, setiap pengenceran dengan air menetapkan potensial zat terlarut yang kurang dari air murni dan dinyatakan sebagai angka negatif. Lebih lanjut, jumlah negatif konsisten dengan perbedaan energi bebas Gibbs antara air murni dan larutan.
 http://dedhydjara.wordpress.com/2011/12/02/fistum-air/


Kalorimeter bom

Kalorimeter bom adalah alat yang digunakan untuk mengukur jumlah kalor (nilai kalori) yang dibebaskan pada pembakaran sempurna (dalam O2 berlebih) suatu senyawa, bahan makanan, bahan bakar. Sejumlah sampel ditempatkan pada tabung beroksigen yang tercelup dalam medium penyerap kalor (kalorimeter), dan sampel akan terbakar oleh api listrik dari kawat logam terpasang dalam tabung.
 Purba,Michael: kimia untuk sma kelas XI 1994:Jakarta: Erlangga
Parning mika, marlan:penuntun belajar kimia 2002:jakarta :yudistira cetakan ke dua
Chemistry Org.com
Drs,sudarmo, unggul kimia sma 2 untuk kelasXI 2006 jakarta:phibeta

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

Faktor Abiotik
Faktor abiotik adalah faktor tak hidup yang meliputi faktor fisik dan kimia. Faktor fisik utama yang mempengaruhi ekosistem adalah sebagai berikut.
a. Suhu
Suhu berpengaruh terhadap ekosistem karena suhu merupakan syarat yang diperlukan organisme untuk hidup. Ada jenis-jenis organisme yang hanya dapat hidup pada kisaran suhu tertentu.
b. Sinar matahari
Sinar matahari mempengaruhi ekosistem secara global karena matahari menentukan suhu. Sinar matahari juga merupakan unsur vital yang dibutuhkan oleh tumbuhan sebagai produsen untuk berfotosintesis.
c. Air
Air berpengaruh terhadap ekosistem karena air dibutuhkan untuk kelangsungan hidup organisme. Bagi tumbuhan, air diperlukan dalam pertumbuhan, perkecambahan, dan penyebaran biji; bagi hewan dan manusia, air diperlukan sebagai air minum dan sarana hidup lain, misalnya transportasi bagi manusia, dan tempat hidup bagi ikan. Bagi unsur abiotik lain, misalnya tanah dan batuan, air diperlukan sebagai pelarut dan pelapuk.
d. Tanah
Tanah merupakan tempat hidup bagi organisme. Jenis tanah yang berbeda menyebabkan organisme yang hidup didalamnya juga berbeda. Tanah juga menyediakan unsur-unsur penting bagi pertumbuhan organisme, terutama tumbuhan.

e. Ketinggian
Ketinggian tempat menentukan jenis organisme yang hidup di tempat tersebut, karena ketinggian yang berbeda akan menghasilkan kondisi fisik dan kimia yang berbeda.
f. Angin
Angin selain berperan dalam menentukan kelembapan juga berperan dalam penyebaran biji tumbuhan tertentu.
g. Garis lintang
Garis lintang yang berbeda menunjukkan kondisi lingkungan yang berbeda pula. Garis lintang secara tak langsung menyebabkan perbedaan distribusi organisme di permukaan bumi. Ada organisme yang mampu hidup pada garis lintang tertentu saja.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS